Comprehensive Genomic Profiling

利用全景变异分析聚焦癌症

通过单次NGS检测同时评估多种癌症的多个生物标志物

识别目标变异

全景变异分析(CGP)可以提供可操作的结果和具有可操作潜力的结果,帮助癌症患者确定更有效的治疗途径,提供创新的临床试验选择。无法进行组织活检时,液体活检的CGP可以提供有关肿瘤基因组组成的有用信息。同时进行组织活检和液体活检的CGP可以揭示更多关于肿瘤组成的信息。3,4

潜在目标变异的百分比

多项研究表明,CGP能够识别不同肿瘤类型中潜在的临床相关基因组变异。

从患者样本中识别的潜在目标变异 患者队列 作者
339例患者参与的单中心前瞻性研究。包括多种类型的难治性癌症:卵巢癌(18%)、乳腺癌(16%)、肉瘤(13%)、肾癌(7%)等 Wheler et al 20165
100例患者参与的前瞻性研究,包括不同组织学、罕见或预后较差的癌症 Hirshfield et al 20166
包含10,000例晚期癌症患者的前瞻性研究,涉及多种实体瘤类型 Zehir et al 20177
包含96例患者的回顾性研究,涉及多种肿瘤类型 Reitsma et al 20198
6832例NSCLC患者 Suh et al 20169

每项研究中鉴定出的目标变异的百分比根据患者队列、研究类型、使用的CGP panel以及将基因组变异归类为目标变异所采用标准的不同而不同。

档案数据。

Marjolijn Ligtenberg

专家们如何评价全景变异分析?

听一听病理学家Marjolijn Ligtenberg(拉德堡德大学医学中心肿瘤遗传学实验室)等人介绍CGP为患者和医护人员带来的好处。

CGP与其他测序方法的比较/h4>

CGP vs单基因检测

单基因检测只能检测一种生物标志物。这类检测通常不会覆盖整个基因序列,有可能会遗漏掉重要的基因变异。13

反复单基因检测方法导致组织消耗和重复活检。13,15,16

CGP vs靶向panel

靶向panel通常只覆盖特定基因,而不是整个编码区序列。因此,使用这种方法可能会遗漏掉重要的变异。7

与靶向panel相比,全面的单次检测可以评估大量生物标志物,增加了获得相关信息的机会。

CGP vs外显子组测序

CGP能以更低的成本、更少的测序获得与全外显子组测序相同的TMB结果。在开发个性化医疗方法时,全外显子组测序不仅成本高昂,而且由于其需要大量测序,覆盖度可能不足以检测到存在于较低频率的重要变异。17-21

市场上有很多令人印象深刻的新疗法,其中包含了需要检测的新融合。

Ludovic Lacroix
医学生物学与病理学系
古斯塔夫·鲁西癌症研究所(Institut de Cancérologie Gustave Roussy)

在OmniSeq,我们首选全景变异分析,仅需极少的样本即可检测多个生物标志物,并且会得到一份整合的报告。

Jeff Conroy
OmniSeq首席科学官

在我看来,可靠的CGP分析应包括DNA分析和RNA分析。越来越多的数据表明,仅通过DNA分析可能会漏检临床相关的变异。

Nikoletta Sidiropoulos
佛蒙特大学分子病理学主任

从单基因或单个生物标志物检测到综合panel检测方法的转变是由一系列因素驱动的,其中包括单一综合panel的固有效率,这在癌症和其它组织有限的样本中非常关键。

Jeremy Wallentine
Intermountain Precision Genomics实验室主任

对于CGP而言,包含DNA和RNA靶点非常重要。RNA融合在某些癌症中非常重要,你需要看到确切的RNA融合。

周晓燕教授
复旦大学上海肿瘤研究所分子病理实验室(参考实验室)负责人

将CGP引入内部的原因

将全景变异分析加入您实验室内部的检测菜单可以带来诸多优势。包括:

更快交付结果(与送检服务相比)
降低数量不足(QNS)率
更清楚地了解更多病例的情况
为未来研究建立数据库
增强病理学家在治疗团队中的作用
CGP Solution
CGP 解决方案

TruSight Oncology Comprehensive(EU)是首个CE认证的体外诊断试剂盒,用于基于DNA和RNA的全景变异分析,将多次重复检测整合为一次检测。

了解更多
血浆基因分型与个性化治疗在转移性非小细胞肺癌中的临床意义

 

基因组和转录组图谱分析扩展了癌症精准医疗:WINTHER试验

 

114个肿瘤相关基因panel检测的可行性和实用性:一项以医院为基础的研究

 

参考文献
  1. Pennel AP, Mutebi A, Zheng-Yi Z, et al. Economic Impact of Next-Generation Sequencing Versus Single-Gene Testing to Detect Genomic Alterations in Metastatic Non–Small-Cell Lung Cancer Using a Decision Analytic Model. JCO Precis Oncol. 2019. doi.org/10.1200/PO.18.00356.
  2. Lindeman NI, Cagle PT, Aisner DL, et al. Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Mol Diagn. 2018 Mar;20(2):129-159.
  3. Aggarwal C, Thompson JC, Black TA, et al.. Clinical Implications of Plasma-Based Genotyping With the Delivery of Personalized Therapy in Metastatic Non-Small Cell Lung Cancer. JAMA Oncol. 2019 Feb 1;5(2):173-180.
  4. Tukachinsky H, Madison RW, Chung JH, et al. Genomic analysis of circulating tumor DNA in 3,334 patients with advanced prostate cancer identifies targetable BRCA alterations and AR resistance mechanisms. Clin Cancer Res. 2021 Feb 8:clincanres.CCR-20-4805-E.2020.
  5. Wheler JJ, Janku F, Naing A et al 2016 Cancer Therapy Directed by Comprehensive Genomic Profiling: A Single Center Study. Cancer Res. 2016 Jul 1;76(13):3690-701.
  6. Hirshfield KM, Tolkunov D, Zhong H. Clinical Actionability of Comprehensive Genomic Profiling for Management of Rare or Refractory Cancers. Oncologist . 2016 Nov;21(11):1315-1325.
  7. Zehir A, Benayed R, Shah R et al Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med . 2017 Jun;23(6):703-713.
  8. Reitsma et al., 2019. Effect of a Collaboration Between a Health Plan, Oncology Practice, and Comprehensive Genomic Profiling Company from the Payer Perspective. Journal of Managed Care & Specialty Pharmacy. 2019 Jan 11:1-10
  9. Suh JH, Johnson A, Albacker L, et al. Comprehensive Genomic Profiling Facilitates Implementation of the National Comprehensive Cancer Network Guidelines for Lung Cancer Biomarker Testing and Identifies Patients Who May Benefit From Enrollment in Mechanism-Driven Clinical Trials. Oncologist. 2016 Jun;21(6):684-91.
  10. NIH National Cancer Institute. Cancer Drugs - National Cancer Institute. cancer.gov website. https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies-fact-sheet. Accessed May 28, 2021.
  11. NIH US National Library of Medicine. Home - ClinicalTrials.gov. Find a study. https://www.clinicaltrials.gov/. Search terms included “genetic”, “genomic”, “DNA”, or “RNA”. Accessed January 25, 2021.
  12. Kopetz S, Shaw K, Lee J, et al. Use of a Targeted Exome Next-Generation Sequencing Panel Offers Therapeutic Opportunity and Clinical Benefit in a Subset of Patients With Advanced Cancers. JCO Precision Oncology. 2019;3:1-14.
  13. Drilon A, Wang L, Arcila ME, et al. Broad, Hybrid Capture-Based Next-Generation Sequencing Identifies Actionable Genomic Alterations in Lung Adenocarcinomas Otherwise Negative for Such Alterations by Other Genomic Testing Approaches. Clin Cancer Res. 2015;21(16):3631-363.
  14. Ali SM, Hensing T, Schrock AB, et al. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization. Oncologist. 2016 Jun;21(6):762-70.
  15. Lim C, Tsao MS, Le LW, et al. Biomarker testing and time to treatment decision in patients with advanced nonsmall-cell lung cancer. Annals of Oncology. 2015;26(7):1415-1421.
  16. Yu TM, Morrison C, Gold EJ, et al. Multiple Biomarker Testing Tissue Consumption and Completion Rates With Single-gene Tests and Investigational Use of Oncomine Dx Target Test for Advanced Non-Small-cell Lung Cancer: A Single-center Analysis. Clin Lung Cancer. 2018 Jan;20(1):20-29.e8.
  17. Buchhalter I, Rempel E, Endris V, et al. Size matters: Dissecting key parameters for panel-based tumor mutational burden analysis. Int J Cancer. 2019;144(4):848-858 .
  18. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.
  19. Pestinger V, Smith M, Sillo T, et al. Use of an integrated pan-cancer oncology enrichment NGS assay to Measure tumour mutational burden to detect clinically actionable variants. Mol Diagn Ther. 2020 Jun;24(3):339-349.
  20. Heydt C, Rehker J, Pappesch R, et al. Analysis of tumor mutational burden: correlation of five large gene panels with whole exome sequencing. Sci Rep. 2020 Jul 9;10(1):11387.
  21. Vanderwalde A, Spetzler D, Xiao N, et al. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018 Mar;7(3):746-756. Med. 2018 Mar;7(3):746-756.